Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling.

نویسندگان

  • Vivian González-Pérez
  • Katherine Stack
  • Katica Boric
  • David Naranjo
چکیده

Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na(+) and K(+) channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 e(o) across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K(+)-channel by up to approximately 50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 A, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET

In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...

متن کامل

Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET

In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...

متن کامل

اثرات میدان الکترومغناطیسی تلفن همراه بر عملکرد تک نانوکانال پروتیینی OmpF: یک رویکرد تجربی

Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managin...

متن کامل

Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...

متن کامل

R 1 in the Shaker S 4 occupies the gating charge transfer center in the resting state Meng -

In the voltage-gated Shaker K channel, the probability of opening increases from 10 to nearly 1 over a range of <100 mV (Islas and Sigworth, 1999). This exquisite sensitivity to voltage is conferred by positively charged amino acid residues located in the S4 transmembrane segment. In response to membrane depolarization, the side chains of four S4 arginine residues (R1–R4) in each of the four c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 11  شماره 

صفحات  -

تاریخ انتشار 2010